Weak orthogonality

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Weak–type Orthogonality Principle

We are interested in the relationships between three different concepts, first and foremost is that of the phase space, by which we generally mean the Euclidean space formed from the cross product of the spatial variable with the dual frequency variable. Next, we want to associate subsets of that space with functions, the subset describing the location of the function in natural ways. And final...

متن کامل

Pseudo-Hermiticity, weak pseudo-Hermiticity and η-orthogonality condition

We discuss certain features of pseudo-Hermiticity and weak pseudo-Hermiticity conditions and point out that, contrary to a recent claim, there is no inconsistency if the correct orthogonality condition is used for the class of pseudo-Hermitian, PTsymmetric Hamiltonians of the type Hβ = [p + iβν(x)] 2/2m + V (x). PACS: 03.65.Ca

متن کامل

Global Orthogonality Implies Local Almost-orthogonality

We introduce a new stopping-time argument, adapted to handle linear sums of noncompactly-supported functions that satisfy fairly weak decay, smoothness, and cancellation conditions. We use the argument to obtain a new Littlewood-Paley-type result for such sums. 0. Introduction. First, an apology. The title, though correct, is somewhat misleading. It should be “Global almostorthogonality implies...

متن کامل

On Approximate Birkhoff-James Orthogonality and Approximate $ast$-orthogonality in $C^ast$-algebras

We offer a new definition of $varepsilon$-orthogonality in normed spaces, and we try to explain some properties of which. Also we introduce some types of $varepsilon$-orthogonality in an arbitrary  $C^ast$-algebra $mathcal{A}$, as a Hilbert $C^ast$-module over itself, and investigate some of its properties in such spaces. We state some results relating range-kernel orthogonality in $C^*$-algebras.

متن کامل

Uniform Normalisation beyond Orthogonality

A rewrite system is called uniformly normalising if all its steps are perpetual, i.e. are such that if s → t and s has an infinite reduction, then t has one too. For such systems termination (SN) is equivalent to normalisation (WN). A well-known fact is uniform normalisation of orthogonal non-erasing term rewrite systems, e.g. the λI-calculus. In the present paper both restrictions are analysed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1972

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1972.41.1